Air Battery

Posted : admin On 1/26/2022
Aluminium–air battery
Specific energy1300 (practical), 6000/8000 (theoretical) W·h/kg[1]
Energy densityN/A
Specific power200 W/kg
Nominal cell voltage1.2 V

Aluminium–air batteries (Al–air batteries) produce electricity from the reaction of oxygen in the air with aluminium. They have one of the highest energy densities of all batteries, but they are not widely used because of problems with high anode cost and byproduct removal when using traditional electrolytes. This has restricted their use to mainly military applications. However, an electric vehicle with aluminium batteries has the potential for up to eight times the range of a lithium-ion battery with a significantly lower total weight.[1]

Replacement Battery for iPad 5/iPad air, Teseko Battery Kit with Repair Tools, Premium Battery Toolkit Set Compatible with A1822, A1823,A1474, A1475, A1476 4.2 out of 5 stars 11 $25.99 $ 25. The battery in all MacBook Air models is 'integrated,' which means it is not designed to be replaced by end-users, and it certainly is not easily 'swappable' like the battery in 'pre-Unibody' MacBook and MacBook Pro models. The MacBook Air battery is replaceable, though.

Aluminium–air batteries are primary cells, i.e., non-rechargeable. Once the aluminium anode is consumed by its reaction with atmospheric oxygen at a cathode immersed in a water-based electrolyte to form hydrated aluminium oxide, the battery will no longer produce electricity. However, it is possible to mechanically recharge the battery with new aluminium anodes made from recycling the hydrated aluminium oxide. Such recycling would be essential if aluminium–air batteries were to be widely adopted.

Aluminium-powered vehicles have been under discussion for some decades.[2] Hybridisation mitigates the costs, and in 1989 road tests of a hybridised aluminium–air/lead–acid battery in an electric vehicle were reported.[3] An aluminium-powered plug-in hybrid minivan was demonstrated in Ontario in 1990.[4]

The metal air battery has a very attractive energy density because part of the reactants come from the air. They have been developed for long range power supplies for electric vehicles. For example rechargeable Li-ion batteries could be used for around town but aluminum air batteries could be used for 1000 mile range.

In March 2013, Phinergy[5] released a video demonstration of an electric car using aluminium–air cells driven 330 km using a special cathode and potassium hydroxide.[6] On May 27, 2013, the Israeli channel 10 evening news broadcast showed a car with Phinergy battery in the back, claiming 2,000 kilometres (1,200 mi) range before replacement of the aluminum anodes is necessary.[7]


The anode oxidation half-reaction is Al + 3OH
+ 3e −2.31 V.

The cathode reduction half-reaction is O
+ 2H
+ 4e4OH
+0.40 V.

The total reaction is 4Al + 3O
+ 6H
+2.71 V.

About 1.2 volts potential difference is created by these reactions and is achievable in practice when potassium hydroxide is used as the electrolyte. Saltwater electrolyte achieves approximately 0.7 volts per cell.

The specific voltage of the cell can vary in dependence of the composition of the electrolyte as well as the structure and materials of the cathode.



Aluminium as a 'fuel' for vehicles has been studied by Yang and Knickle.[1] In 2002, they concluded:

The Al/air battery system can generate enough energy and power for driving ranges and acceleration similar to gasoline powered cars...the cost of aluminium as an anode can be as low as US$ 1.1/kg as long as the reaction product is recycled. The total fuel efficiency during the cycle process in Al/air electric vehicles (EVs) can be 15% (present stage) or 20% (projected), comparable to that of internal combustion engine vehicles (ICEs) (13%). The design battery energy density is 1300 Wh/kg (present) or 2000 Wh/kg (projected). The cost of battery system chosen to evaluate is US$ 30/kW (present) or US$ 29/kW (projected). Al/air EVs life-cycle analysis was conducted and compared to lead/acid and nickel metal hydride (NiMH) EVs. Only the Al/air EVs can be projected to have a travel range comparable to ICEs. From this analysis, Al/air EVs are the most promising candidates compared to ICEs in terms of travel range, purchase price, fuel cost, and life-cycle cost.

Technical problems remain to be solved to make Al–air batteries suitable for electric vehicles. Anodes made of pure aluminium are corroded by the electrolyte, so the aluminium is usually alloyed with tin or other elements. The hydrated alumina that is created by the cell reaction forms a gel-like substance at the anode and reduces the electricity output. This is an issue being addressed in the development work on Al–air cells. For example, additives that form the alumina as a powder rather than a gel have been developed.


Modern air cathodes consist of a reactive layer of carbon with a nickel-grid current collector, a catalyst (e.g., cobalt), and a porous hydrophobic PTFE film that prevents electrolyte leakage. The oxygen in the air passes through the PTFE then reacts with the water to create hydroxide ions. These cathodes work well but they can be expensive.

Traditional Al–air batteries had a limited shelf life[8] because the aluminium reacted with the electrolyte and produced hydrogen when the battery was not in use–although this is no longer the case with modern designs. The problem can be avoided by storing the electrolyte in a tank outside the battery and transferring it to the battery when it is required for use.

These batteries can be used, for example, as reserve batteries in telephone exchanges and as backup power sources.

Aluminium–air batteries may become an effective solution for marine applications for their high energy density, low cost and the abundance of aluminum, with no emissions at the point of use (boats and ships).Phinergy Marine,[9]RiAlAiR[10] and several other commercial companies are working on commercial and military applications in the marine environment.

See also[edit]


  1. ^ abcYang, S. (2002). 'Design and analysis of aluminum/air battery system for electric vehicles'. Journal of Power Sources. 112: 162–201. Bibcode:2002JPS...112..162Y. doi:10.1016/S0378-7753(02)00370-1.
  2. ^'The Aluminum-Air Battery'. Retrieved 2014-04-28.
  3. ^'Demonstration of Aluminum-Air Fuel Cells in a Road Vehicle'. Retrieved 2014-04-28.
  4. ^Plug-in highwayArchived 2013-10-29 at the Wayback Machine.
  5. ^'Phinergy, Home'. Retrieved 2014-04-29.
  6. ^Phinergy corporate video on YouTube
  7. ^Edelstein, Stephen. 'Aluminum-Air Battery Developer Phinergy Partners With Alcoa'. Retrieved 2014-04-28.
  8. ^Aluminium/air batteriesArchived January 3, 2007, at the Wayback Machine
  9. ^'Phinergy Marine, Home'. Retrieved 2020-04-24.
  10. ^'RiAlAiR, Home'. Retrieved 2020-04-24.

External links[edit]

Air Battery Not Working

Retrieved from '–air_battery&oldid=1017953839'

The world of hardware reshapes itself as fast as it ever has nowadays. Pocket computers exponentially increase in power seemingly every few months, while our laptops can now fold completely in half and masquerade as a tablet. However, as far as hardware ever reaches, batteries always seem so stagnant. Now, though, promising research into sodium-air batteries could lead toward the battery revolution we’ve all been waiting for.

Aside from, for example, standard AA or AAA batteries, lithium-ion batteries are the go-to power source for our most prized mobile devices. They are rechargeable, and last an acceptable amount of time before cutting out right in the middle of an important phone call. Though our smartphones and tablets have an acceptable lifetime, sometimes you accept what you’re given rather than what you actually want. An iPhone 5 can last around 8 hours of 3G, LTE data use or talk time, or for 10 hours of video playback, or 40 hours of audio playback.

When you’re using some combination of all those features — as anyone with a smartphone and a long commute is fully aware — the phone’s battery life is woefully short. Because of the way a lithium-ion battery generates power — through chemical reactions — the amount of power generated has a ceiling. This means that at some point, a lithium-ion battery will be giving literally the maximum amount of power it can. A ceiling means that, eventually, our devices will require more power than the battery can give.

In order for a battery to work, it needs to exchange an electron, because that usually generates a form of energy that is harvestable. However, the weight of a material is an important factor when designing a battery, as, obviously, a heavier battery means a heavier, less desirable device. So, in order to generate energy from a light material, you turn to oxidation. Considering oxygen abounds, you don’t need to include something that will be the oxidation catalyst, which makes the battery lighter. This type of battery, rather than the usual suffix of -ion, carries the self-explanatory suffix of -air. Scientists theorize that, in part due to not requiring a catalyst in the battery, a higher yield of energy can be generated. Whereas a lithium-ion battery has a capacity of around 200Wh/kg, a lithium-air battery could reach all the way up to 3460Wh/kg.

Unfortunately, the chemistry behind lithium-air batteries is so complicated that researchers have begun shifting their focus to sodium-air batteries. Though the capacity of the sodium-air is much lower than the lithium-air, sitting around 1600Wh/kg, it’s at least significantly higher than a lithium-ion, and much easier to make than the lithium-air. One end of the battery has a sodium electrode, on which an electrolyte is sandwiched underneath a carbon electrode that oxygen can travel through. The electron travels around the battery, the ionic metal dissolves into the electrolyte which in turn travels to the carbon electrode and hits the oxygen.

Aluminium Air Battery

Though this is still in an experimental form, researchers found that not only does the sodium-air hold more charge than a lithium-air battery, but is easier to charge as well. It was mentioned above that lithium-air has a theoretical density of more than double the sodium-air, but as it turns out, the sodium-air has a higher density in practice (that isn’t to say that, one day, lithium-air won’t reach its enormous density destiny).

At the moment, though, a sodium-air can only be charged around eight times before it dies for good. Hopefully, scientists will be able to figure out why that is, and bring us a battery that can power our mobile devices for long periods of time without us having to conserve the power after a long night out.

Battery Air Conditioner For Camping

Now read: IBM creates breathing, high-density, light-weight lithium-air battery

Liquid Air Battery

Research paper: A rechargeable room-temperature sodium superoxide (NaO2) battery